15 research outputs found

    Design of the Heliospheric Imager for the STEREO mission

    Full text link
    The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and address the observational problem of very faint coronal mass ejections (CME) over a wide field of view (~90 degree(s)) ranging from 13 to 330 R[SUB]0[/SUB]. The key element of the instrument design is to reject the solar disk light, with straylight attenuation of the order of 10[SUP]-13[/SUP] to 10[SUP]-15[/SUP] in the camera systems. This attenuation is accomplished by a specific design of straylight baffling system, and two separate observing cameras with complimentary FOV's cover the wide FOV. A multi-vane diffractive system has been theoretically optimized to achieve the lower requirement (10[SUP]-13[/SUP] for HI-1) and is combined with a secondary baffling system to reach the 10[SUP]-15[/SUP] rejection performance in the second camera system (HI-2). This paper presents the design concept of the HI optics and baffles, and the preparation of verification tests that will demonstrate the instrument straylight performances. The baffle design has been optimized according to accommodation constrains on the spacecraft, and the optics were studied to provide adequate light gathering power and image quality. Straylight has been studied in the complete configuration, including the lens barrels and the focal plane assemblies. A specific testing facility is currently being studied to characterize the effective straylight rejection of the HI baffling. An overview of the developments for those tests is presented

    Design and tests for the heliospheric imager of the STEREO mission

    Full text link
    The Heliospheric Imager (HI) is part of the SECCHI suite of instruments on-board the two STEREO spacecrafts to be launched in 2005. The two HI instruments will provide stereographic image pairs of solar coronal plasma and coronal mass ejections (CME) over a wide field of view (~90°), ranging from 13 to 330 R[SUB]0[/SUB]. These observations compliment the 15 R[SUB]0[/SUB] field of view of the solar corona obtained by the other SECCHI instruments (2 coronagraphs and an EUV imager). The key challenge of the instrument design is the rejection of the solar disk light, with total straylight attenuation of the order of 10[SUP]-13 [/SUP]to 10[SUP]-15[/SUP]. A multi-vane diffractive baffle system has been theoretically optimized to achieve the lower requirement (10[SUP]-13[/SUP] for HI-1) and is combined with a secondary baffling system to reach the 10[SUP]-15[/SUP] rejection performance in the second camera system (HI-2). This paper presents the last updates of the SECCHI/HI design concept, with the expected performance. A verification program is currently in progress. The on-going stray-light verification tests are discussed. A set of tests has been conducted in air, and under vacuum. The results are presented and compared with the expected theoretical data

    First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun Earth Line

    Full text link
    We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy ( IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10[SUP]-14[/SUP] of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere

    Heliospheric Images of the Solar Wind at Earth

    Full text link
    During relatively quiet solar conditions throughout the spring and summer of 2007, the SECCHI HI2 white-light telescope on the STEREO B solar-orbiting spacecraft observed a succession of wave fronts sweeping past Earth.We have compared these heliospheric images with in situ plasma and magnetic field measurements obtained by near-Earth spacecraft, and we have found a near perfect association between the occurrence of these waves and the arrival of density enhancements at the leading edges of high-speed solar wind streams. Virtually all of the strong corotating interaction regions are accompanied by large-scale waves, and the low-density regions between them lack such waves. Because the Sun was dominated by long-lived coronal holes and recurrent solar wind streams during this interval, there is little doubt that we have been observing the compression regions that are formed at low latitude as solar rotation causes the high-speed wind from coronal holes to run into lower speed wind ahead of it

    SECCHI observations of the Sun-s Garden-Hose Density spiral

    Full text link
    The SECCHI HI2 white-light imagers on the STEREO A and B spacecraft show systematically different proper motions of material moving outward from the Sun in front of high-speed solar wind streams from coronal holes. As a group of ejections enters the eastern (A) field of view, the elements at the rear of the group appear to overrun the elements at the front. (This is a projection effect and does not mean that the different elements actually merge.) The opposite is true in the western (B) field; the elements at the front of the group appear to run away from the elements at the rear. Elongation/time maps show this effect as a characteristic grouping of the tracks of motion into convergent patterns in the east and divergent patterns in the west, consistent with ejections from a single longitude on the rotating Sun. Evidently, we are observing segments of the “garden-hose” spiral made visible when fast wind from a low-latitude coronal hole compresses blobs of streamer material being shed at the leading edge of the hole

    Observations of the White Light Corona from Solar Orbiter and Solar Probe Plus

    Full text link
    The SoloHI instrument on Solar Orbiter and the WISPR instrument on Solar Probe+ will make white light coronagraphic images of the corona as the two spacecraft orbit the Sun. The minimum perihelia for Solar Orbiter is about 60 Rsun and for SP+ is 9.5 Rsun. The wide field of view of the WISPR instrument (about 105 degrees radially) corresponds to viewing the corona from 2.2 Rsun to 20 Rsun. Thus the entire Thomson hemisphere is contained within the telescope’s field and we need to think of the instrument as being a traditional remote sensing instrument and then transitioning to a local in-situ instrument. The local behavior derives from the fact that the maximum Thomson scattering will favor the electron plasma close to the spacecraft - exactly what the in-situ instruments will be sampling. SoloHI and WISPR will also observe scattered light from dust in the inner heliosphere, which will be an entirely new spatial regime for dust observations from a coronagraph, which we assume to arise from dust in the general neighborhood of about half way between the observer and the Sun. As the dust grains approach the Sun, they evaporate and do not contribute to the scattering. A dust free zone has been postulated to exist somewhere inside of 5 Rsun where all dust is evaporated, but this has never been observed. The radial position where the evaporation occurs will depend on the precise molecular composition of the individual grains. The orbital plane of Solar Orbiter will gradually increase up to about 35 degrees, enabling a very different view through the zodiacal dust cloud to test the models generated from in-ecliptic observations. In this paper we will explore some of the issues associated with the observation of the dust and will present a simple model to explore the sensitivity of the instrument to observe such evaporations
    corecore